Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
NPJ Vaccines ; 7(1): 147, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2119433

ABSTRACT

Virus neutralization data using post-vaccination sera are an important tool in informing vaccine use policy decisions, however, they often pose interpretive challenges. We systematically reviewed the pre-print and published literature for neutralization studies against Omicron using sera collected after both primary and booster vaccination. We found a high proportion of post-primary vaccination sera were not responding against Omicron but boosting increased both neutralizing activity and percent of responding sera. We recommend reporting percent of responders alongside neutralization data to portray vaccine neutralization ability more accurately.

2.
Ann N Y Acad Sci ; 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2052884

ABSTRACT

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.

3.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Article in English | MEDLINE | ID: covidwho-1703195

ABSTRACT

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Subject(s)
COVID-19/etiology , Disease Models, Animal , SARS-CoV-2 , Age Factors , Animals , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Comorbidity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
4.
Curr Infect Dis Rep ; 23(6): 9, 2021.
Article in English | MEDLINE | ID: covidwho-1191521

ABSTRACT

PURPOSE OF REVIEW: The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has affected lives of billions of individuals, globally. There is an urgent need to develop interventions including vaccines to control the ongoing pandemic. RECENT FINDINGS: Development of tools for fast-tracked testing including small and large animal models for vaccine efficacy analysis, assays for immunogenicity assessment, critical reagents, international biological standards, and data sharing allowed accelerated development of vaccines. More than 300 vaccines are under development and 9 of them are approved for emergency use in various countries, with impressive efficacy ranging from 50 to 95%. Recently, several new SARS-CoV-2 variants have emerged and are circulating globally, and preliminary findings imply that some of them may escape immune responses against previous variants and diminish efficacy of current vaccines. Most of these variants acquired new mutations in their surface protein (Spike) which is the antigen in most of the approved/under development vaccines. SUMMARY: In this review, we summarize novel and traditional approaches for COVID-19 vaccine development including inactivated, attenuated, nucleic acid, vector and protein based. Critical assessment of humoral and cell-mediated immune responses induced by vaccines has shown comparative immunogenicity profiles of various vaccines in clinical phases. Recent reports confirmed that some currently available vaccines provide partial to complete protection against emerging SARS-CoV-2 variants. If more mutated variants emerge, current vaccines might need to be updated accordingly either by developing vaccines matching the circulating strain or designing multivalent vaccines to extend the breadth.

5.
Vaccines (Basel) ; 9(3)2021 Mar 19.
Article in English | MEDLINE | ID: covidwho-1167773

ABSTRACT

Non-human primates (NHPs) are used extensively in the development of vaccines and therapeutics for human disease. High standards in the design, conduct, and reporting of NHP vaccine studies are crucial for maximizing their scientific value and translation, and for making efficient use of precious resources. A key aspect is consideration of the 3Rs principles of replacement, reduction, and refinement. Funders of NHP research are placing increasing emphasis on the 3Rs, helping to ensure such studies are legitimate, ethical, and high-quality. The UK's National Centre for the 3Rs (NC3Rs) and the Coalition for Epidemic Preparedness Innovations (CEPI) have collaborated on a range of initiatives to support vaccine developers to implement the 3Rs, including hosting an international workshop in 2019. The workshop identified opportunities to refine NHP vaccine studies to minimize harm and improve welfare, which can yield better quality, more reproducible data. Careful animal selection, social housing, extensive environmental enrichment, training for cooperation with husbandry and procedures, provision of supportive care, and implementation of early humane endpoints are features of contemporary good practice that should and can be adopted more widely. The requirement for high-level biocontainment for some pathogens imposes challenges to implementing refinement but these are not insurmountable.

6.
Nature ; 586(7830): 509-515, 2020 10.
Article in English | MEDLINE | ID: covidwho-792975

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Disease Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Animals , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Ferrets/virology , Humans , Mesocricetus/virology , Mice , Pneumonia, Viral/immunology , Primates/virology , SARS-CoV-2 , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL